МОСКВА, 12 июл - РИА Новости. Физики из Шанхая заявили об успешном проведении первой "космической" квантовой телепортации, переправив информацию о состоянии частицы с квантового спутника "Мо-цзы" на станцию слежения на Земле, говорится в статье, размещенной в электронной библиотеке arXiv.org

"Мы заявляем о первой квантовой телепортации одиночных фотонов с обсерватории на Земли на спутник на околоземной орбите, удаленный от нее на 1400 километров. Успешная реализация этой задачи открывает дорогу к сверхдальней телепортации и является первым шагом на пути к созданию квантового интернета", — пишут Цзянь-Вэй Пань (Jian-Wei Pan) из университета Шанхая и его коллеги.

Феномен квантовой запутанности является основой современных квантовых технологий. Это явление, в частности, играет важную роль в системах защищенной квантовой связи - такие системы полностью исключают возможность незаметной "прослушки" из-за того, что законы квантовой механики запрещают "клонирование" состояния частиц света. В настоящее время системы квантовой связи активно разрабатываются в Европе, в Китае, в США.

За последние годы ученые из России и зарубежных стран создали десятки систем квантовой связи, узлы которых могут обмениваться данными на достаточно больших расстояниях, составляющих около 200-300 километров. Все попытки расширить эти сети до международного и межконтинентального уровня столкнулись с непреодолимыми трудностями, связанными с тем, как свет угасает при движении через оптоволокно.

По этой причине многие команды ученых задумались о переводе систем квантовой связи на "космический" уровень, обмениваясь информацией через спутник, позволяющий восстанавливать или усиливать "незримую связь" между запутанными фотонами. Первый космический аппарат такого рода уже присутствует на орбите - им является китайский спутник "Мо-цзы", выведенный в космос в августе 2016 года.

На этой неделе Пань и его коллеги рассказали о первых успешных экспериментах по квантовой телепортации, проведенных на борту "Мо-Дзы" и на станции связи в городке Нгари на Тибете, построенной на высоте в четыре километра для обмена информацией с первым квантовым спутником.

Квантовая телепортация была впервые описана на теоретическом уровне в 1993 году группой физиков под руководством Чарльза Бенетта. По их идее, атомы или фотоны могут обмениваться информацией на каком угодно расстоянии в том случае, если они были "запутаны" на квантовом уровне.

Для осуществления этого процесса необходим обычный канал связи, без которого мы не можем прочитать состояние запутанных частиц, из-за чего такую "телепортацию" нельзя использовать для передачи данных на астрономические расстояния. Несмотря на такое ограничение, квантовая телепортация чрезвычайно интересна физикам и инженерам по той причине, что ее можно использовать для передачи данных в квантовых компьютерах и для шифрации данных.

Руководствуясь этой идеей, ученые запутали две пары фотонов в лаборатории в Нгари, и передали одну из четырех "спутанных" частиц на борт "Мо-Дзы" при помощи лазера. Спутник одновременно измерил состояние и этой частицы, и другого фотона, который в этот момент был на его борту, в результате чего информация о свойствах второй частицы мгновенно "телепортировалась" на Землю, поменяв то, как вел себя "наземный" фотон, спутанный с первой частицей.

В общей сложности, как рассказывают китайские физики, им удалось "запутать" и телепортировать свыше 900 фотонов, что подтвердило корректность работы "Мо-Дзы" и доказало, что двусторонняя "орбитальная" квантовая телепортация в принципе возможна. Подобным образом, как отмечают ученые, можно передавать не только фотоны, но и кубиты, ячейки памяти квантового компьютера, и другие объекты квантового мира.

Китайские ученые летом 2016 года проведут первый в мире эксперимент по осуществлению квантовой телепортации на расстояние более 1200 километров. Об этом сообщает Nature News.

Для эксперимента ученые планируют запустить в июне 2016 года спутник. Таким образом, физики надеются осуществить квантовую телепортацию состояний частиц между космосом и наземными станциями.

На первом этапе опытов ученые собираются проверить надежность криптографической связи между Пекином и Веной, посредником в которой выступит околоземный спутник.

На втором этапе ученые через спутник осуществят квантовую телепортацию фотонов между станциями в Дэлинхе и в Лицзяне (или Наньшане). Расстояние между пунктами превышает 1200 километров.

Ква́нтовая телепортация - передача квантового состояния на расстояние при помощи разъединённой в пространстве сцепленной (запутанной) пары и классического канала связи, при которой состояние разрушается в точке отправления при проведении измерения, после чего воссоздаётся в точке приёма. Термин установился благодаря опубликованной в 1993 году статье в журнале «Physical Review Letters», где описано, какое именно квантовое явление предлагается называть «телепортацией» (англ. teleporting) и чем оно отличается от популярной в научной фантастике «телепортации». Квантовая телепортация не передаёт энергию или вещество на расстояние. Обязательным этапом при квантовой телепортации является передача информации между точками отправления и приёма по классическому, неквантовому каналу, которая может осуществляться не быстрее, чем со скоростью света, тем самым не нарушая принципы современной физики.

При осуществлении квантовой телепортации помимо передачи информации по квантовому каналу, необходимо также осуществить передачу дополнительной информации, необходимой для прочтения сообщения, по классическому каналу. Для передачи «квантовой части» используются характерные для квантово-запутанных частиц корреляции Эйнштейна - Подольского - Розена, а для передачи классической информации годится любой обычный канал связи.

Для простоты рассмотрим квантовую систему с двумя возможными состояниями \psi_1 и \psi_2 (например, проекцию спина электрона или фотона на заданную ось). Такие системы часто называют кубитами. Однако описанный ниже способ пригоден для передачи состояния любой системы, имеющей конечное число состояний.

Пусть у отправителя есть частица А, находящаяся в произвольном квантовом состоянии \psi_A = \alpha \psi_1 + \beta \psi_2, и он хочет передать это квантовое состояние получателю, то есть сделать так, чтобы у получателя оказалась в распоряжении частица B в том же самом состоянии. Иными словами, необходимо передать отношение двух комплексных чисел \alpha и \beta (с максимальной точностью). Заметим, что главная цель здесь - это передать информацию не как можно быстрее, а как можно точнее. Для достижения этой цели выполняются следующие шаги.

Отправитель и получатель договариваются заранее о создании пары квантово-запутанных частиц C и B, причём C попадёт отправителю, а B - получателю. Поскольку эти частицы запутаны, то каждая из них не обладает своей волновой функцией (вектором состояния), но вся пара целиком (а точнее, интересующие нас степени свободы) описываются единым четырёхмерным вектором состояния \psi_{BC}.

Квантовая система частиц A и C имеет четыре состояния, однако мы не можем описать её состояние вектором - чистым (полностью определённым) состоянием обладает лишь система из трёх частиц A, B, C. Когда отправитель совершает измерение, имеющее четыре возможных исхода, над системой из двух частиц A и C, он получает одно из 4 собственных значений измеряемой величины. Поскольку при этом измерении система из трёх частиц A, B, C коллапсирует в некое новое состояние, причём состояния частиц A и C становятся известны полностью, то сцепленность разрушается и частица B оказывается в некотором определённом квантовом состоянии.

Именно в этот момент происходит как бы «передача» «квантовой части» информации. Однако восстановить передаваемую информацию пока невозможно: получатель знает, что состояние частицы B как-то связано с состоянием частицы A, но не знает как именно!

Для выяснения этого необходимо, чтобы отправитель сообщил получателю по обычному классическому каналу результат своего измерения (затратив при этом два бита, соответствующие зацепленному состоянию AC, измеренному отправителем). По законам квантовой механики получается, что, имея результат измерения, проведённого над парой частиц A и C, и плюс к тому запутанную с C частицу B, получатель сможет совершить необходимое преобразование над состоянием частицы B и восстановить исходное состояние частицы A.

Полная передача информации осуществится только после того, как получатель будет обладать данными, полученными по обоим каналам. До того как получен результат по классическому каналу, получатель ничего не может сказать о переданном состоянии.

Фантастическое понятие телепортации происходит из специфичной интерпретации эксперимента: «исходное состояние частицы A после всего произошедшего разрушается. То есть состояние было не скопировано, а перенесено из одного места в другое».

Экспериментальная реализация

Экспериментальная реализация квантовой телепортации поляризационного состояния фотона была осуществлена в 1997 году почти одновременно группами физиков под руководством Антона Цайлингера (Университет Инсбрука) и Франческо де Мартини (Университет Рима).

В журнале Nature за 17 июня 2004 года было объявлено об успешном экспериментальном наблюдении квантовой телепортации квантового состояния атома сразу двумя исследовательскими группами: M.Riebe et al., Nature 429, 734-737 (телепортация квантового состояния иона атома кальция) и M.D.Barrett et al., Nature 429, 737-739 (телепортация кубита на основе иона атома бериллия). Несмотря на поднявшуюся шумиху в средствах массовой информации, эти эксперименты вряд ли можно назвать прорывом: скорее это просто очередной большой шаг в направлении создания квантовых компьютеров и реализации квантовой криптографии.

В 2006 году была впервые осуществлена телепортация между объектами разной природы - квантами лазерного излучения и атомами цезия. Успешный эксперимент был произведен исследовательской группой из Института Нильса Бора в Копенгагене.

23 января 2009 года учёным впервые удалось телепортировать квантовое состояние иона на один метр.

10 мая 2010 года в эксперименте, поставленном физиками из Научно-технического университета Китая и Университета Цинхуа, проводилась передача квантового состояния фотона на 16 километров.

В 2012 году китайским физикам удалось за 4 часа передать 1100 запутанных фотонов на расстояние 97 километров.

В сентябре 2012 года физики из Университета Вены и Академии наук Австрии установили новый рекорд в квантовой телепортации - 143 километра

В сентябре 2015 года учёным из Национального института стандартов и технологий США удалось телепортировать фотоны по оптоволокну на расстояние свыше 100 км. В ходе эксперимента использовался однофотонный детектор со сверхпроводящими кабелями на силициде молибдена при температуре, близкой к абсолютному нулю.

Много лет назад Альберт Эйнштейн назвал квантовую запутанность «жутким действием на расстоянии». Это действительно контринтуитивная концепция, которая на первый взгляд противоречит здравому смыслу. Два объекта могут находиться друг от друга на большом расстоянии, но они сохраняют «связь» друг с другом через свои квантовые состояния. Разрушив состояние одного объекта (измерив его), мы тем самым узнаём состояние запутанного с ним объекта, на каком бы расстоянии тот ни находился. То есть квантовое состояние первого объекта в момент измерения как бы переходит ко второму объекту, это образно называют квантовой телепортацией.

Сейчас группа китайских физиков впервые в мире осуществила квантовую телепортацию объекта с Земли на орбиту. Результаты эксперимента с «жутким действием на расстоянии» опубликованы 4 июля 2017 года на сайте препринтов arXiv.org (arXiv:1707.00934).

Специально для этого эксперимента китайцы в прошлом году вывели на солнечно-синхронную орбиту научный спутник Micius. Каждый день он проходит над одной и той же точкой Земли в одно и то же время, что даёт возможность тщательно подготовить эксперимент и провести его в любое время в неизменных условиях, а также повторить при необходимости в тех же условиях. Cпутник Micius оснащён высокочувствительным фотонным детектором и оборудованием для определения квантового состояния отдельных фотонов, отправленных с Земли.

Во время эксперимента квантовая телепортация осуществлялась с разной степенью надёжности (см. диаграмму) на расстоянии 500-1400 км от передатчика до спутника, что является новым мировым рекордом по дальности квантовой телепортации. Раньше такие эксперименты проводились только на Земле, а максимальное расстояние для проверки квантовой запутанности составляло около 100 км. В вакууме передача фотонов происходит более надёжно, они меньше реагируют с окружающими объектами и лучше сохраняют запутанность.


Станция Ngari с передатчиком для эксперимента была построена в горах Тибета на высоте более 4000 м. Станция генерировала запутанные пары фотонов со скоростью 4000 в секунду. Половина из них отправлялась на орбитальную станцию, и там проверялось, сохранилась ли квантовая спутанность после передачи. Вторая половина фотонов оставалась на Земле.

Для улучшения качества передачи исследователи разработали ряд инновационных техник и специальных приборов, в том числе компактный сверхъяркий источник мультифотонного запутывания, аппаратуру для уменьшения расхождения луча, высокоскоростную и высокоточную систему APT (acquiring, pointing, tracking).

Измерения показали, что часть фотонов по прибытии на спутник действительно сохранили запутанность со своими земными «напарниками». В частности, за 32 дня передачи из нескольких миллионов отправленных фотонов запутанными остались 911. Точность передачи составила 0,80±0,01, что заметно превышает классический лимит (см. диаграмму внизу).


Фотоны с одинаковыми квантовыми состояниями с физической точки зрения являются одинаковыми фотонами. Таким образом, можно констатировать, что учёные впервые в истории провели телепортацию объекта с поверхности Земли на орбиту. Ну а в практическом смысле это первый рабочий аплинк по надёжной передаче квантовой информации на очень большие расстояния - с Земли на спутник. Авторы считают, что это важный шаг к созданию квантового интернета в глобальном масштабе.

Теоретически не существует максимального ограничения на расстояние для измерения запутанности, то есть квантовой телепортации. На практике же квантовое состояние фотонов очень хрупкое и разрушается в результате реакции с окружающей средой, поэтому очень важно разработать технологии надёжной передачи запутанных фотонов на большие расстояния.

Квантовая телепортация может найти применение в разных областях: «Телепортация на большие расстояния считается фундаментальным элементом в протоколах, таких как крупномасштабные квантовые сети и распределённые квантовые вычисления, - пишет группа китайских учёных в реферате к научной статье. - Для создания „квантового интернета” в глобальном масштабе требуется значительно расширить расстояние для передачи информации. Многообещающей технологией для этого является использование спутниковой платформы и спутникового канала связи, который может удобно связать две дистанционно удалённые точки на Земле с относительно небольшой потерей сигнала, потому что большую часть пути фотоны проходят в вакууме.

Другим странам теперь будет трудно побить рекорд Китая по дальности квантовой телепортации, потому что ни Евросоюз, ни США не планировали запускать спутники с фотодетекторами специально для такого эксперимента в космосе, а сохранить квантовую запутанность на Земле в оптоволокне длиной 1400 км невероятно трудно.

Многочисленные блокбастеры последних лет, в большинстве своём являющиеся экранизациями комиксов, прочно внедрили в сознание современного человека образ супергероя. Супергерой это чаще всего обычный с виду человек, который обладает сверхъестественными способностями и нередко вынужденный из-за этого вести скрытный образ жизни. Эти фильмы настолько популярны, красочны и многочисленны, что для некоторых людей понятие «супергерой» становится обыденным. Мысль о реальности таких героев посещает людей всё чаще – поэтому появляются и пользуются большой популярностью такие сюжеты, как телепортация в Китае.

Супермен на проезжей части

Осенью 2012 года одним из основных хитов Всемирной паутины стал видеоролик, на котором была якобы зафиксирована не просто телепортация человека, а весьма драматическая телепортация сразу двух человек. Помещённый на видеохостинге YouTube ролик имеет длительность около минуты и выглядит как съёмки камеры уличного наблюдения. Время событий, судя по хронометражу в левом верхнем углу – сразу после полуночи 9 мая 2012 года. Место событий – один из городских или загородных перекрёстков Китая. Главных действующих лиц трое. Первый – водитель грузовика с фургоном белого цвета, второй – велосипедист. Третий – таинственный незнакомец, лица которого не видно из-за широкого капюшона. По телосложению этот явно молодой человек может быть как юношей, так и девушкой.

События на видео разворачиваются следующим образом. После нескольких проехавших автомобилей на заднем плане появляется грузовик, постепенно набирающий скорость. По мере его приближения из затемнённой области слева по боковой дороге появляется велосипедист. Траектории и скорости движения грузовика и велосипедиста таковы, что столкновение кажется неизбежным, а последствия для водителя более лёгкого транспортного средства обещают быть фатальными. Но тут в правой затемнённой области экрана отмечается некое движение: стремительный размытый силуэт приближается к месту намечающегося столкновения. В последний момент силуэт очерчивается чётче и зритель видит человека, который хватает велосипедиста практически под самыми колёсами машины. После этого незнакомец, велосипедист и велосипед буквальным образом исчезают, а грузовик начинает торможение. Автомобиль ещё полностью не остановился, как в дальней правой части экрана, как раз на освещённой части дороги, появляется группа из двух человек и велосипеда. Незнакомец отпускает спасённого, при этом его руки ярко светятся. Он набрасывает на голову капюшон и спешно уходит с дороги. В это время явно потрясённый велосипедист без сил садится на бордюр, к нему направляется вышедший водитель грузовика, не обнаруживший ничего на проезжей части.

Обмануть легко тех, кто сам обманываться рад

Телепортация человека в Китае, тем более зафиксированная на видео и вдобавок при столь кинематографичных обстоятельствах, очень быстро стала известна и набрала миллионы просмотров на видеохостинге. Сразу же начались оживлённые дискуссии по поводу того, реальным ли является видео или это розыгрыш неких специалистов по визуальным спецэффектам. Любопытно, что сторонников реальности наблюдаемой на съёмках телепортации обнаружилось довольно много. Тут же возникли даже своеобразные «фанфики» - начали придумываться сюжеты, призванные создать историю супергероя-девушки (женский пол персонажа показался большинству аудитории более интригующим и впечатляющим), раскрыть причины, побуждающие её скрывать свои сверхспособности и тому подобное.

Но и критиков-скептиков нашлось немало и уж они разложили видеоролик буквально по косточкам. Было приведено немало рациональных аргументов в пользу того, что сюжет является постановочным, несёт явные следы использования программного обеспечения по преобразованию видеоматериала, а также имеет явные логические огрехи. Прежде всего, насторожило само возникновение потенциально смертельно опасного ДТП: против обыкновения, грузовик при приближении к перекрёстку стал не снижать, а набирать скорость, как будто создавая условия для драматической сцены. Также подозрительно подозрение велосипедиста: он удивительно спокойно ехал прямо под колёса, не меняя скорости и даже не повернув головы при пересечении главной дороги, где он должен уступать приоритет движения. Не всё в порядке и с водителем грузовика – на кадрах чётко видно, что выбравшийся из кабины человек одет в ярко-белую футболку или рубашку. Но в достаточно хорошо освещённой кабине во время торможения не видно не только ничего светлого, там вообще не наблюдается водителя.

Что касается таинственного человека со способностью телепортироваться самому и телепортировать других, то он тоже не так «чист». Во-первых, явные следы видеомонтажа имеет его «энергетический след» во время сверхбыстрого рывка на дорогу. Его силуэт в момент хватания велосипедиста очень отчётлив, в то время как размытый силуэт его движения по-прежнему сохраняется. Во-вторых, очень странным выглядит выбор конечной точки телепортации. Законы геометрии, физики и просто логики гласят, что самым простым и естественным было бы перемещение спасённого велосипедиста по ходу движения незнакомца – то есть в левую сторону экрана, прочь с дороги. Но телепортация происходит с обратным вектором, направо – получается, что незнакомец во время телепортации сделал этакую петлю, что не имеет объяснений. Во-вторых, закрадывается смутное сомнение, что появление телепортирующихся двух человек и велосипеда в правой части дороги объясняется, так сказать, сценической необходимостью. Именно эта часть является наиболее освещённой во всей сцене, так что для достижения наибольшего драматизма, для наблюдения шокового состояния спасенного, светящихся рук спасителя и его удаления в темноту она подходит лучше всего. Совокупность всех этих наблюдений и рассуждений приводит к выводу, что данная телепортация является довольно креативной, но всё-таки мистификацией.

Александр Бабицкий